外语教育网
您的位置:外语教育网 > 行业英语 > 天文学英语 > 相关阅读 正文
  • 站内搜索:

Io 木卫一(英)

2006-02-21 00:00

  Io is the fifth of Jupiter's known satellites and the third largest; it is the innermost of the Galilean moons. Io is slightly larger than Earth's Moon.

  orbit: 422,000 km from Jupiter

  diameter: 3630 km

  mass: 8.93e22 kg

  Io was a maiden who was loved by Zeus (Jupiter) and transformed into a heifer in a vain attempt to hide her from the jealous Hera.

  Discovered by Galileo and Marius in 1610.

  In contrast to most of the moons in the outer solar system, Io and Europa may be somewhat similar in bulk composition to the terrestrial planets, primarily composed of molten silicate rock. Recent data from Galileo indicates that Io has a core of iron (perhaps mixed with iron sulfide) with a radius of at least 900 km.

  Io's surface is radically different from any other body in the solar system. It came as a very big surprise to the Voyager scientists on the first encounter. They had expected to see impact craters like those on the other terrestrial bodies and from their number per unit area to estimate the age of Io's surface. But there are very few, if any, impact craters on Io (left). Therefore, the surface is very young.

  Instead of craters, Voyager 1 found hundreds of volcanic calderas. Some of the volcanoes are active! Striking photos of actual eruptions with plumes 300 km high were sent back by both Voyagers (right) and by Galileo (bottom left image on this page) This may have been the most important single discovery of the Voyager missions; it was the first real proof that the interiors of other "terrestrial" bodies are actually hot and active. The material erupting from Io's vents appears to be some form of sulfur or sulfur dioxide. The volcanic eruptions change rapidly. In just four months between the arrivals of Voyager 1 and Voyager 2 some of them stopped and others started up. The deposits surrounding the vents also changed visibly.

  Recent images taken with NASA's Infrared Telescope Facility on Mauna Kea, Hawaii show a new and very large eruption (right). A large new feature near Ra Patera has also been seen by HST. Images from Galileo also show many changes from the time of Voyager's encounter. These observations confirm that Io's surface is very active indeed.

  Io has an amazing variety of terrains: calderas up to several kilometers deep, lakes of molten sulfur (below right), mountains which are apparently NOT volcanoes (left), extensive flows hundreds of kilometers long of some low viscosity fluid (some form of sulfur?), and volcanic vents. Sulfur and its compounds take on a wide range of colors which are responsible for Io's variegated appearance.

  Analysis of the Voyager images led scientists to believe that the lava flows on Io's surface were composed mostly of various compounds of molten sulfur. However, subsequent ground-based infra-red studies indicate that they are too hot for liquid sulfur. One current idea is that Io's lavas are molten silicate rock. Recent HST observations indicate that the material may be rich in sodium. Or there may be a variety of different materials in different locations.

  Some of the hottest spots on Io may reach temperatures as high as 2000 K though the average is much lower, about 130 K. These hot spots are the principal mechanism by which Io loses its heat.

  The energy for all this activity probably derives from tidal interactions between Io, Europa, Ganymede and Jupiter. These three moons are locked into resonant orbits such that Io orbits twice for each orbit of Europa which in turn orbits twice for each orbit of Ganymede. Though Io, like Earth's Moon always faces the same side toward its planet, the effects of Europa and Ganymede cause it to wobble a bit. This wobbling stretches and bends Io by as much as 100 meters (a 100 meter tide!) and generates heat the same way a coat hanger heats up when bent back and forth. (Lacking another body to perturb it, the Moon is not heated by Earth in this way.)

  Io also cuts across Jupiter's magnetic field lines, generating an electric current. Though small compared to the tidal heating, this current may carry more than 1 trillion watts. It also strips some material away from Io which forms a torus of intense radiation around Jupiter. Particles escaping from this torus are partially responsible for Jupiter's unusually large magnetosphere.

  Recent data from Galileo indicate that Io may have its own magnetic field as does Ganymede.

  Io has a thin atmosphere composed of sulfur dioxide and perhaps some other gases.

  Unlike the other Galilean satellites, Io has little or no water. This is probably because Jupiter was hot enough early in the evolution of the solar system to drive off the volatile elements in the vicinity of Io but not so hot to do so farther out.

[Chinese Version]
相关热词:天文学 英语

上一篇:Mars 火星(中)

下一篇:The Sun 太阳(中)

行业英语辅导课程
李 健协和医科大学医学博士,美国国立卫生研究院博士后……详情>>
李健:医学英语网上辅导名师
高 云澳大利亚注册会计师协会会员,会计专业硕士……详情>>
高云:财会英语网上辅导名师
李文沛中国政法大学博士,师从著名法学家周忠海教授……详情>>
李文沛:法律英语网上辅导名师

  1、凡本网注明 “来源:外语教育网”的所有作品,版权均属外语教育网所有,未经本网授权不得转载、链接、转贴或以其他方式使用;已经本网授权的,应在授权范围内使用,且必须注明“来源:外语教育网”。违反上述声明者,本网将追究其法律责任。
  2、本网部分资料为网上搜集转载,均尽力标明作者和出处。对于本网刊载作品涉及版权等问题的,请作者与本网站联系,本网站核实确认后会尽快予以处理。本网转载之作品,并不意味着认同该作品的观点或真实性。如其他媒体、网站或个人转载使用,请与著作权人联系,并自负法律责任。
  3、联系方式
  编辑信箱:for68@chinaacc.com
  电话:010-82319999-2371